
SHAMWOW
PWL NYC LIGHTNING TALK

so we use hashes a lot as programmers

even if we don't work directly with crypto

so I got curious about how it actually worked

like, how does the empty string return a hash? Why is it computationally hard to reverse a hash? What's it doing in there?

SHAMWOW

HASHES, HASHES, HASHES!

▸ Desirable properties of hashes:

▸ One-way (an arbitrary hash tells you nothing of its input)

▸ “Avalanche Effect” (changing the input slightly results
in a huge change in output)

▸ Fast (memory- and time-efficient to compute)

▸ Unique (it should be hard to find two bitstrings that
share a hash)

One way: hashes are not encryption, which is two-way. (I mean, ideally, encryption also leaves no trace of its input, but that’s only possible with one-time pads, I believe.)
They cannot be “reversed” except by brute-force or some flaw in the hash algorithm itself.

Part of this is the “avalanche effect”; the hash for the phrase “I am a cat” and “I am a hat” are entirely dissimilar to each other.

We want them to be fast to compute, because they’re used for checksums and the like (this is not a desirable property in some systems, however; see scrypt and other
password-protection hashes that are slow to compute so that even a leaked list of passwords isn’t useful.)

And Unique — it should be hard to find collisions, so that you can’t substitute one bit string for another and have the same hash returned. (This is why SHAttered was a
big deal — researchers found a way to generate visually distinct PDFs that nonetheless had the same hash)

SHAMWOW

We’re not talking about SHA1 today but I couldn’t resist this tweet.

SHAMWOW

SLY AND THE FAMILY SHA

▸ SHA stands for Secure Hash Algorithm

▸ An NIST-promoted spec, FIPS PUB 180-4

▸ SHA0 (withdrawn): 1993

▸ SHA1: 1995

▸ SHA-256 (and friends): 2001

▸ http://dx.doi.org/10.6028/NIST.FIPS.180-4

SHA was part of the “Capstone Project” from the NSA, the same project that gave the world the Clipper chip.

Initial publication of SHA was in 1993, but it was withdrawn and republished two years later with a slight variation; these are now known as SHA-0 and SHA-1

SHA2 was an update to the SHA standard, making it more secure (more bits!). It has a number of variations that differ in how many bits are in the resulting hash; the 256-
bit version is the most common, and therefore people generally use “SHA2” and “SHA256” interchangeably.

SHA3 is a completely new hash, not using the same techniques as SHA1 and SHA2; it’s based on something called Keccak, and if you want to no more, I encourage you
to give a lightning talk on the subject.

SHAMWOW

UGH, DETAILS

▸ Merkle–Damgård construction

▸ Proposed in Ralph Merkle’s Ph.D thesis in 1979

▸ Basic steps:

▸ Pad message to a standard size, including initial message
length, then chunk into blocks

▸ Compress each block

▸ Combine result of compression with previous output and
repeat

Ralph Merkle and Ivan Damgård independently proved that this is cryptographically secure as long as the compression you’re doing is secure

SHAMWOW

OK, HOW DO WE IMPLEMENT THIS?

▸ First rule: DON’T

▸ Seriously, unless you know what you’re doing, never
implement cryptographic functions on your own (for
actual use) unless you have a really good reason

▸ Luckily, while I don’t know what I’m doing, I’m also not
using this for anything other than exploration!

There are all sorts of things you can do wrong. Timing attacks, side-channels, padding bugs… just trust the experts when you need a hash function.

SHAMWOW

GETTING DOWN TO BIT-NESS

"Hello World".unpack("B*")[0]

H 01001000  
E 01100101  
L 01101100  
L 01101100  
O 01101111  
 00100000  
W 01010111  
O 01101111  
R 01110010  
L 01101100  
D 01100100

"First, split your input into 32-bit numbers"

OK, I'll just use Ruby's, uh...

Ruby just has integers. No width is specified.

Well, OK, whatever, some googling tells me the magic I want to turn our string into a big pile of bits is `unpack("B*")` so let's start there and work out this "32-bit integer"
problem later

SHAMWOW

TRY A LITTLE RANDOMNESS

The first 32 bits of the fractional parts of the square roots of
the first 8 primes 2 through 19

h0 = 0x6a09e667  
h1 = 0xbb67ae85  
h2 = 0x3c6ef372  
h3 = 0xa54ff53a  
h4 = 0x510e527f  
h5 = 0x9b05688c  
h6 = 0x1f83d9ab  
h7 = 0x5be0cd19

I also need all these magic hex numbers. These will be the seeds for the start of the compression function inside the algorithm.

SHAMWOW

NOTHING UP MY SLEEVE

▸ Hashes need ‘seed’ numbers for doing the permutations

▸ These numbers should be meaningless…

▸ …but not arbitrary.

▸ DES was considered suspect for years because its magic
numbers were, well, magic — no explanation was given for
them by the NSA

▸ It turns out they were chosen specifically to avoid certain
theoretical attacks

Nothing-up-my-sleeve numbers are used when you need random seed numbers, but in order to prove to everyone else that you haven't actually designed a fiendish
backdoor into your system, you have to be able to explain why they aren't *arbitrary* numbers. For example, it'd be perfectly acceptable to say "the first 1000 digits of
pi", but it would be very suspicious to say "the 2,509,374th through 2,510,899th digits of pi" -- people would assume you were picking values that somehow advantaged
you for breaking the hash later.

SHAMWOW

OK, A LOT OF RANDOMNESS

The first 32 bits 
of the fractional parts 

of the cube roots 
of the first 64 primes 

2 through 311

SHAMWOW

THIS WON’T BE ON THE FINAL

k = [ 
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b,
0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01,
0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7,
0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152,
0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147,
0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc,
0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819,
0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08,
0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f,
0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 
]

SHAMWOW

PADDING THE NUMBERS

 len = message_in_bits.length

 bits = message_in_bits

 bits << "1"

 bits << "0" * (512 - ((bits.length + 64) % 512))

 bits << "%064b" % len

Anyway, back to the algorithm. Take your message as bits, append a `1` bit, append enough 0s to get it up to the next multiple of 512, then set the last 64 bits to the
length of your message. Note this is one of the reasons that the hashes for "0" and "00" are different -- although we're padding our message with zeros, the extra 1 bit
and the length serve as differentiators. This is one of Merkle–Damgård’s insights that makes the padding of the message secure.

SHAMWOW

BITS, CHUNKS, AND WORDS

Once we've done all that, We’re going to split this into chunks of 512 bits, and then loop over the chunks and, for each chunk, squirt the bits into an empty 64-element
array, turning them into 32 bit “words”, and start massaging them.

Those of you doing math in your heads are noticing that it only fills up the first quarter of the array. To generate the rest of the array, we start bit-shifting!

SHAMWOW

I THOUGHT THIS WAS CRYPTOGRAPHY, NOT LATIN CLASS

Here’s the functions that power the inner loop of the compression function.

^ is AND (1 if both are 1, 0 otherwise)

Plus-circle is XOR (which returns 1 if the two input bits differ but 0 if they’re the same)

The angle-bracket in Ch before the x is NOT (flip from 0 to 1 and vice versa)

SHR is just bit-wise right-shift

And ROTR. We’ll come to those in a second.

SHAMWOW

A LITTLE BIT OF RUBY

(16..63).each { |w|  
 s0 = ror(m[w-15], 7) ^ ror(m[w-15], 18) ^ (m[w-15] >> 3) 
 s1 = ror(m[w-2], 17) ^ ror(m[w-2], 19) ^ (m[w-2] >> 10) 
 m[w] = (m[w-16] + s0 + m[w-7] + s1) & 0xFFFFFFFF 
}

What does that look like in code?

Here's the first and second "aha" moments while I was doing this.

SHAMWOW

A LITTLE BIT OF RUBY

(16..63).each { |w|  
 s0 = ror(m[w-15], 7) ^ ror(m[w-15], 18) ^ (m[w-15] >> 3)  
 s1 = ror(m[w-2], 17) ^ ror(m[w-2], 19) ^ (m[w-2] >> 10)  
 m[w] = (m[w-16] + s0 + m[w-7] + s1) & 0xFFFFFFFF 
}

When you're doing bitwise operations on numbers, they'll never "jump the tracks", as it were. For example: an XOR or an AND never push bits between columns; they
only operate within a bit! So you can XOR and ROR to your hearts content without worrying about popping outside of a 32-bit interger.

SHAMWOW

A LITTLE BIT OF RUBY

(16..63).each { |w|  
 s0 = ror(m[w-15], 7) ^ ror(m[w-15], 18) ^ (m[w-15] >> 3) 
 s1 = ror(m[w-2], 17) ^ ror(m[w-2], 19) ^ (m[w-2] >> 10) 
 m[w] = (m[w-16] + s0 + m[w-7] + s1) & 0xFFFFFFFF  
}

The second realization was that in the absence of proper 32-bit unsigned integers I can just fake them with a bitmask, so that when I do this addition, I can just lop off the
high bits by ANDing the number with a 32-bit all-1 number (0xFFFFFFFF, which is easier to type than "1" 32 times).

SHAMWOW

LOSE BITS OFF YOUR WAISTLINE WITH THIS ONE SIMPLE TRICK

9 >> 1 = 4

4 >> 1 = 2

2 >> 1 = 1

1 >> 1 = 0

Right-shift “moves” the bits in a number to the right, and drops the right-most (that is, least-significant) digit. Here’s right-shift being run repeatedly on a number…

SHAMWOW

LOSE BITS OFF YOUR WAISTLINE WITH THIS ONE SIMPLE TRICK

`1001` >> 1 = `100`

`100` >> 1 = `10`

`10` >> 1 = `1`

 `1` >> 1 = `0`

…and here’s a somewhat easier to grok version actually showing the binary. This is pretty common in programming; it’s a fast way to divide by two with no remainder, for
example.

SHAMWOW

SPIN ME RIGHT ROUND

SHAMWOW

THERE IS A SEASON, TURN, TURN, TURN

 9 >>> 1 = 12

12 >>> 1 = 6

6 >>> 1 = 3

3 >>> 1 = 9

SHAMWOW

THERE IS A SEASON, TURN, TURN, TURN

`1001` >>> 1 = `1100`

`1100` >>> 1 = `0110`

`0110` >>> 1 = `0011`

`0011` >>> 1 = `1001`

SHAMWOW

THERE IS A SEASON, TURN, TURN, TURN

`1001` >>> 1 = `1100`  
`1100` >>> 1 = `0110`  
`0110` >>> 1 = `0011`  
`0011` >>> 1 = `1001`  
`1001` >>> 1 = `1100`  
`1100` >>> 1 = `0110`  
`0110` >>> 1 = `0011`  
`0011` >>> 1 = `1001`

SHAMWOW

HOW WIDE IS MY WHAT

 `1` ror 1 = 1

 `01` ror 1 = 2

`00000001` ror 1 = 128

`00000000000000000000000000000001` ror 1 =
2147483648

Now, the other difference between right-shift and right-rotate is that right-rotate has to be "width-aware". After all, if you're rotating the number 1, is that `1`? `01`?
`00000001`? `00000000000000000000000000000001`? The resulting value is wildly different depending on the answer!

Luckily, in our case, we don't have to guess, since all of the numbers inside the algorithm are defined as 32-bit. Now, the first time I did this, I had this awful string-based
for-loop manipulation built out. It was awful. But then I went back and actually read the spec again, and it defines it in terms of left and right-shifts!

SHAMWOW

BITMASKS FOR DUMMIES

(((num >> shift) | (num << (32-shift))) & ((2 ** 32) - 1))

(((1 >> 1) | (1 << (32-1))) & ((2 ** 32) - 1))

 00000000000000000000000000000000 |  
 10000000000000000000000000000000 &

11111111111111111111111111111111

10000000000000000000000000000000

2147483648

SHAMWOW

BITMASKS FOR DUMMIES

201 = `11001001`

(((num >> shift) | (num << (32-shift))) & ((2 ** 32) - 1))

(((201 >> 2) | (201 << (32-2))) & ((2 ** 32) - 1))

 00000000000000000000000000110010 |  
11001001000000000000000000000000000000 &  

 11111111111111111111111111111111

01000000000000000000000000110010

4294967496

SHAMWOW

PRE-LOADING THE NUMBERS

a = h0  
b = h1  
c = h2  
d = h3  
e = h4  
f = h5  
g = h6  
h = h7

Assign eight variables; the starting values on the first loop are the fractional parts of the square roots I mentioned before.

SHAMWOW

For each “word” in the array, perform the following violence. Remember that K is the BIG list of prime numbers.

SHAMWOW

LOSSY COMPRESSION IS A VIRTUE

s1 = ror(e, 6) ^ ror(e, 11) ^ ror(e, 25)  
ch = (e & f) ^ (~(e) & g)  
tmp1 = (h + s1 + ch + k[w] + m[w]) & 0xFFFFFFFF

s0 = ror(a, 2) ^ ror(a, 13) ^ ror(a, 22)  
maj = (a & b) ^ (a & c) ^ (b & c)  
tmp2 = (s0 + maj) & 0xFFFFFFFF

In case you’ve forgotten those what those functions are, here’s the ruby for it.

SHAMWOW

SUPER BOWL SHUFFLE

h = g  
g = f  
f = e  
e = (d + tmp1) & 0xFFFFFFFF  
d = c  
c = b  
b = a  
a = (temp1 + tmp2) & 0xFFFFFFFF

This is also in the word loop. We’re ratcheting down the list of temporary variables *per word*. Remember, ANDing by FFFFFFFF just truncates to the lower 32 bits after
addition.

SHAMWOW

…AND MERGE IT BACK IN

h0 = (h0 + a) & 0xFFFFFFFF  
h1 = (h1 + b) & 0xFFFFFFFF  
h2 = (h2 + c) & 0xFFFFFFFF  
h3 = (h3 + d) & 0xFFFFFFFF  
h4 = (h4 + e) & 0xFFFFFFFF  
h5 = (h5 + f) & 0xFFFFFFFF  
h6 = (h6 + g) & 0xFFFFFFFF  
h7 = (h7 + h) & 0xFFFFFFFF

Sum and repeat until you run out of message.

SHAMWOW

TURNS OUT A HASH AIN’T NOTHIN’ BUT A NUMBER

‣ Once you’ve walked all the message blocks, just convert
those eight carry variables h0-h7 into hexadecimal and
concatenate them, and you’re done!

Then, once we've run out of message, the hash is just those eight variables, concatenated together, all 256 bits of it (voilá, the reason for the name SHA-265), generally
represented in hexadecimal for sanity's sake.

