// Copyright 2017, The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package cmp import ( "fmt" "reflect" "strings" "unicode" "unicode/utf8" "github.com/google/go-cmp/cmp/internal/value" ) // Path is a list of PathSteps describing the sequence of operations to get // from some root type to the current position in the value tree. // The first Path element is always an operation-less PathStep that exists // simply to identify the initial type. // // When traversing structs with embedded structs, the embedded struct will // always be accessed as a field before traversing the fields of the // embedded struct themselves. That is, an exported field from the // embedded struct will never be accessed directly from the parent struct. type Path []PathStep // PathStep is a union-type for specific operations to traverse // a value's tree structure. Users of this package never need to implement // these types as values of this type will be returned by this package. // // Implementations of this interface are // StructField, SliceIndex, MapIndex, Indirect, TypeAssertion, and Transform. type PathStep interface { String() string // Type is the resulting type after performing the path step. Type() reflect.Type // Values is the resulting values after performing the path step. // The type of each valid value is guaranteed to be identical to Type. // // In some cases, one or both may be invalid or have restrictions: // • For StructField, both are not interface-able if the current field // is unexported and the struct type is not explicitly permitted by // an Exporter to traverse unexported fields. // • For SliceIndex, one may be invalid if an element is missing from // either the x or y slice. // • For MapIndex, one may be invalid if an entry is missing from // either the x or y map. // // The provided values must not be mutated. Values() (vx, vy reflect.Value) } var ( _ PathStep = StructField{} _ PathStep = SliceIndex{} _ PathStep = MapIndex{} _ PathStep = Indirect{} _ PathStep = TypeAssertion{} _ PathStep = Transform{} ) func (pa *Path) push(s PathStep) { *pa = append(*pa, s) } func (pa *Path) pop() { *pa = (*pa)[:len(*pa)-1] } // Last returns the last PathStep in the Path. // If the path is empty, this returns a non-nil PathStep that reports a nil Type. func (pa Path) Last() PathStep { return pa.Index(-1) } // Index returns the ith step in the Path and supports negative indexing. // A negative index starts counting from the tail of the Path such that -1 // refers to the last step, -2 refers to the second-to-last step, and so on. // If index is invalid, this returns a non-nil PathStep that reports a nil Type. func (pa Path) Index(i int) PathStep { if i < 0 { i = len(pa) + i } if i < 0 || i >= len(pa) { return pathStep{} } return pa[i] } // String returns the simplified path to a node. // The simplified path only contains struct field accesses. // // For example: // MyMap.MySlices.MyField func (pa Path) String() string { var ss []string for _, s := range pa { if _, ok := s.(StructField); ok { ss = append(ss, s.String()) } } return strings.TrimPrefix(strings.Join(ss, ""), ".") } // GoString returns the path to a specific node using Go syntax. // // For example: // (*root.MyMap["key"].(*mypkg.MyStruct).MySlices)[2][3].MyField func (pa Path) GoString() string { var ssPre, ssPost []string var numIndirect int for i, s := range pa { var nextStep PathStep if i+1 < len(pa) { nextStep = pa[i+1] } switch s := s.(type) { case Indirect: numIndirect++ pPre, pPost := "(", ")" switch nextStep.(type) { case Indirect: continue // Next step is indirection, so let them batch up case StructField: numIndirect-- // Automatic indirection on struct fields case nil: pPre, pPost = "", "" // Last step; no need for parenthesis } if numIndirect > 0 { ssPre = append(ssPre, pPre+strings.Repeat("*", numIndirect)) ssPost = append(ssPost, pPost) } numIndirect = 0 continue case Transform: ssPre = append(ssPre, s.trans.name+"(") ssPost = append(ssPost, ")") continue } ssPost = append(ssPost, s.String()) } for i, j := 0, len(ssPre)-1; i < j; i, j = i+1, j-1 { ssPre[i], ssPre[j] = ssPre[j], ssPre[i] } return strings.Join(ssPre, "") + strings.Join(ssPost, "") } type pathStep struct { typ reflect.Type vx, vy reflect.Value } func (ps pathStep) Type() reflect.Type { return ps.typ } func (ps pathStep) Values() (vx, vy reflect.Value) { return ps.vx, ps.vy } func (ps pathStep) String() string { if ps.typ == nil { return "" } s := ps.typ.String() if s == "" || strings.ContainsAny(s, "{}\n") { return "root" // Type too simple or complex to print } return fmt.Sprintf("{%s}", s) } // StructField represents a struct field access on a field called Name. type StructField struct{ *structField } type structField struct { pathStep name string idx int // These fields are used for forcibly accessing an unexported field. // pvx, pvy, and field are only valid if unexported is true. unexported bool mayForce bool // Forcibly allow visibility paddr bool // Was parent addressable? pvx, pvy reflect.Value // Parent values (always addressible) field reflect.StructField // Field information } func (sf StructField) Type() reflect.Type { return sf.typ } func (sf StructField) Values() (vx, vy reflect.Value) { if !sf.unexported { return sf.vx, sf.vy // CanInterface reports true } // Forcibly obtain read-write access to an unexported struct field. if sf.mayForce { vx = retrieveUnexportedField(sf.pvx, sf.field, sf.paddr) vy = retrieveUnexportedField(sf.pvy, sf.field, sf.paddr) return vx, vy // CanInterface reports true } return sf.vx, sf.vy // CanInterface reports false } func (sf StructField) String() string { return fmt.Sprintf(".%s", sf.name) } // Name is the field name. func (sf StructField) Name() string { return sf.name } // Index is the index of the field in the parent struct type. // See reflect.Type.Field. func (sf StructField) Index() int { return sf.idx } // SliceIndex is an index operation on a slice or array at some index Key. type SliceIndex struct{ *sliceIndex } type sliceIndex struct { pathStep xkey, ykey int isSlice bool // False for reflect.Array } func (si SliceIndex) Type() reflect.Type { return si.typ } func (si SliceIndex) Values() (vx, vy reflect.Value) { return si.vx, si.vy } func (si SliceIndex) String() string { switch { case si.xkey == si.ykey: return fmt.Sprintf("[%d]", si.xkey) case si.ykey == -1: // [5->?] means "I don't know where X[5] went" return fmt.Sprintf("[%d->?]", si.xkey) case si.xkey == -1: // [?->3] means "I don't know where Y[3] came from" return fmt.Sprintf("[?->%d]", si.ykey) default: // [5->3] means "X[5] moved to Y[3]" return fmt.Sprintf("[%d->%d]", si.xkey, si.ykey) } } // Key is the index key; it may return -1 if in a split state func (si SliceIndex) Key() int { if si.xkey != si.ykey { return -1 } return si.xkey } // SplitKeys are the indexes for indexing into slices in the // x and y values, respectively. These indexes may differ due to the // insertion or removal of an element in one of the slices, causing // all of the indexes to be shifted. If an index is -1, then that // indicates that the element does not exist in the associated slice. // // Key is guaranteed to return -1 if and only if the indexes returned // by SplitKeys are not the same. SplitKeys will never return -1 for // both indexes. func (si SliceIndex) SplitKeys() (ix, iy int) { return si.xkey, si.ykey } // MapIndex is an index operation on a map at some index Key. type MapIndex struct{ *mapIndex } type mapIndex struct { pathStep key reflect.Value } func (mi MapIndex) Type() reflect.Type { return mi.typ } func (mi MapIndex) Values() (vx, vy reflect.Value) { return mi.vx, mi.vy } func (mi MapIndex) String() string { return fmt.Sprintf("[%#v]", mi.key) } // Key is the value of the map key. func (mi MapIndex) Key() reflect.Value { return mi.key } // Indirect represents pointer indirection on the parent type. type Indirect struct{ *indirect } type indirect struct { pathStep } func (in Indirect) Type() reflect.Type { return in.typ } func (in Indirect) Values() (vx, vy reflect.Value) { return in.vx, in.vy } func (in Indirect) String() string { return "*" } // TypeAssertion represents a type assertion on an interface. type TypeAssertion struct{ *typeAssertion } type typeAssertion struct { pathStep } func (ta TypeAssertion) Type() reflect.Type { return ta.typ } func (ta TypeAssertion) Values() (vx, vy reflect.Value) { return ta.vx, ta.vy } func (ta TypeAssertion) String() string { return fmt.Sprintf(".(%v)", ta.typ) } // Transform is a transformation from the parent type to the current type. type Transform struct{ *transform } type transform struct { pathStep trans *transformer } func (tf Transform) Type() reflect.Type { return tf.typ } func (tf Transform) Values() (vx, vy reflect.Value) { return tf.vx, tf.vy } func (tf Transform) String() string { return fmt.Sprintf("%s()", tf.trans.name) } // Name is the name of the Transformer. func (tf Transform) Name() string { return tf.trans.name } // Func is the function pointer to the transformer function. func (tf Transform) Func() reflect.Value { return tf.trans.fnc } // Option returns the originally constructed Transformer option. // The == operator can be used to detect the exact option used. func (tf Transform) Option() Option { return tf.trans } // pointerPath represents a dual-stack of pointers encountered when // recursively traversing the x and y values. This data structure supports // detection of cycles and determining whether the cycles are equal. // In Go, cycles can occur via pointers, slices, and maps. // // The pointerPath uses a map to represent a stack; where descension into a // pointer pushes the address onto the stack, and ascension from a pointer // pops the address from the stack. Thus, when traversing into a pointer from // reflect.Ptr, reflect.Slice element, or reflect.Map, we can detect cycles // by checking whether the pointer has already been visited. The cycle detection // uses a separate stack for the x and y values. // // If a cycle is detected we need to determine whether the two pointers // should be considered equal. The definition of equality chosen by Equal // requires two graphs to have the same structure. To determine this, both the // x and y values must have a cycle where the previous pointers were also // encountered together as a pair. // // Semantically, this is equivalent to augmenting Indirect, SliceIndex, and // MapIndex with pointer information for the x and y values. // Suppose px and py are two pointers to compare, we then search the // Path for whether px was ever encountered in the Path history of x, and // similarly so with py. If either side has a cycle, the comparison is only // equal if both px and py have a cycle resulting from the same PathStep. // // Using a map as a stack is more performant as we can perform cycle detection // in O(1) instead of O(N) where N is len(Path). type pointerPath struct { // mx is keyed by x pointers, where the value is the associated y pointer. mx map[value.Pointer]value.Pointer // my is keyed by y pointers, where the value is the associated x pointer. my map[value.Pointer]value.Pointer } func (p *pointerPath) Init() { p.mx = make(map[value.Pointer]value.Pointer) p.my = make(map[value.Pointer]value.Pointer) } // Push indicates intent to descend into pointers vx and vy where // visited reports whether either has been seen before. If visited before, // equal reports whether both pointers were encountered together. // Pop must be called if and only if the pointers were never visited. // // The pointers vx and vy must be a reflect.Ptr, reflect.Slice, or reflect.Map // and be non-nil. func (p pointerPath) Push(vx, vy reflect.Value) (equal, visited bool) { px := value.PointerOf(vx) py := value.PointerOf(vy) _, ok1 := p.mx[px] _, ok2 := p.my[py] if ok1 || ok2 { equal = p.mx[px] == py && p.my[py] == px // Pointers paired together return equal, true } p.mx[px] = py p.my[py] = px return false, false } // Pop ascends from pointers vx and vy. func (p pointerPath) Pop(vx, vy reflect.Value) { delete(p.mx, value.PointerOf(vx)) delete(p.my, value.PointerOf(vy)) } // isExported reports whether the identifier is exported. func isExported(id string) bool { r, _ := utf8.DecodeRuneInString(id) return unicode.IsUpper(r) }