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Abstract

Large 2D information spaces, such as maps, images, or abstract vi-
sualizations, require views at various level of detail: Close ups to
inspect details, overviews to maintain (literally) an overview. Users
often switch between these views. We discuss how smooth ani-
mations from one view to another can be defined. To this end, a
metric on the effect of simultaneous zooming and panning is de-
fined, based on an estimate of the perceived velocity. Optimal is
defined as smooth and efficient. Given the metric, these terms can
be translated into a computational model, which is used to calcu-
late an analytic solution for optimal animations. The model has
two free parameters: animation speed and zoom/pan trade-off. A
user experiment to find good values for these is described.

CR Categories: 1.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques; D.2.2 [Software Engineer-
ing]: Tools and Techniques—User interfaces

Keywords: Navigation, zooming, panning, scrolling, scale space

1 INTRODUCTION

We consider a simple problem. Suppose, we are developing an in-
teractive cartographic application. The user is presented a map of,
say, the US, and can zoom in on regions, states, and cities by pick-
ing items from a list or clicking on areas on the screen. We want to
offer a smooth animation from one close-up on the map to another.
How to define this animation?

One encounters this problem frequently. Cartography is the
prime example, but in Information Visualization there is an even
stronger need for such smooth animations. Abstract data is typi-
cally mapped to 2D graphic representations, such as scatterplots,
graph diagrams, or treemaps. Large data sets lead to large im-
ages with much detail. Interaction with these representations is vi-
tal to achieve insight, as summarized in Ben Shneiderman’s Visual
Information Seeking mantra: Overview, zoom & filter, details-on-
demand [Shneiderman 1996]. Another key concept in Information
Visualization is focus+context. Both stress that data must be visual-
ized at several levels of scale: The user must be enabled to zoom in
and focus, while on the other hand he should maintain an overview
and understand the context of the data focussed on. One solution is
to offer multiple representations at different scales simultaneously,
another class of solutions concerns distortion of space, such as fish-

*{vanwijk, wsinwaan}@win.tue.nl, Department of Mathematics and
Computer Science, Technische Universiteit Eindhoven, The Netherlands

eye views [Furnas 1986]. Here we consider the use of the time
dimension for this purpose. In other words, if the user shifts his
attention, from overview to detail or from one detail to another,
a smooth transition aids in understanding the relation between the
two views.

At first sight, interpolation (linear in space, logarithmic in scale)
might seem to be sufficient to make the transition from one view to
another. However, this solution falls short when the transition has
to be made from one close-up to another. For instance, suppose we
focus on New York and shift to Los Angeles. Such a simple solution
leads to a long animation, where a small strip of the US is shown in
detail. A somewhat better solution is to zoom out first, pan across
the continent, followed by a zoom in on the city of destination. But
how much to zoom out? How much time should the animation take?
How to combine zooming and panning? What is the optimal path?
How can we define optimal here? The problem is less simple than
it seems at first sight.

In this paper we present a solution to this problem, or, in other
words, we present a computational model for fast navigation in
scale space. After a review of related work in section 2, we analyze
the problem in section 3. Central is the definition of a metric on the
effect of zooming and panning, derived from an estimate of average
velocity. Based on this metric we first present an optimal solution
for a simple zoom-out, pan, zoom-in scenario (section 4). Next we
consider arbitrary transitions (section 5) and present how an optimal
path of a virtual camera can be determined analytically given two
projections. In section 6 we present a first user experiment in order
to find satisfying values for the two free parameters in the model
(animation speed and zoom/pan trade off). Finally, conclusions are
drawn and possible extensions are discussed in section 7.

2 BACKGROUND

The importance of viewing at different levels of scale, or for short
multiscale viewing, is addressed in many articles on visualization,
and can be found in many interactive applications, not only visual-
ization tools, but also image viewers, word processors, games, etc..
Bederson has shown with his work on Zoomable User Interfaces
[Bederson et al. 1994; Bederson et al. 2000] how flexible viewing
can be used as a foundation for intuitive user interfaces.
Surprisingly however, we could only find one reference where
the problem we address here is discussed explicitly. George Furnas
and Ben Bederson [1995] present Space-Scale Diagrams: a visual
depiction of multiscale viewing. The horizontal axis denotes space,
the vertical axis denotes scale. Furnas and Bederson show how this
diagram can be employed to attack a variety of problems associated
with multi scale viewing, including optimal pan-zoom trajectories.
Optimal is translated here as the shortest path. To determine the
length of a path, they present measures for pure panning and zoom-
ing, based on an information metric. The distance between two
views is expressed as the number of bits required to encode the dif-
ference between the two frames. For panning this is equal to Bd,
where B is the bit density of the image and d is the displacement in
screen units, for zooming this is equal to Bw logr, where w is the
width of the screen, and r is the zoom factor. Guidelines for sev-
eral piecewise pure pans or zooms trajectories are given, but for the
truly optimal shape, the authors remark that such trajectories "will
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Figure 1: World space and image space

have a complicated curved shape, and finding it is a complicated
calculus-of-variations problem”.

A related topic has been addressed by Igarashi et al. [2000].
They consider how to improve the browsing through large doc-
uments. They recommend that during scrolling the view should
zoom out automatically, such that the perceptual scrolling speed in
screen space remains constant.

Our approach has a similar structure as that of Furnas and Beder-
son, but differs in the way various aspects are filled in. We discuss
the problem in u, w space, where u denotes panning and w denotes
zooming, both measured in world coordinates. We use u, w dia-
grams, which are simpler to understand and work with than space-
scale diagrams. We define optimal as smooth and efficient, define
a metric to measure the effect of combined zooming and panning,
and derive, based on differential geometry, differential equations
that describe optimal paths. We solve these explicitly, first for a
zoom-pan-zoom strategy, and next to find the optimal path. Finally,
we present a small-scale user experiment to find good values for the
two free parameters we have introduced.

3 MODEL

In this section we define the projection in more detail, followed by
our definition of optimality, and the definition of a metric to assess
the effect of zooming and panning. This metric is next used to
define optimality quantitatively.

3.1 Projection

‘We consider the projection of a square subset A of an object M to
image space 1. M is defined over an area W C R%, A C W, where
W denotes world space. We define the area of interest A by a center
point ¢ = (cx, ¢y) € W and a width w, i.e.

A=lcx —w/2,cx +w/2] X [cy —w/2, cy +w/2].

For the image space I we use normalized device coordinates: a unit
square, centered around the origin, i.e.

I =[-1/2,1/2] x [-1/2,1/2].

T zoom
w pan

(u(s), m(s))

(ug, W)

Figure 2: u, w space diagram

The projection of a point x = (x, y) € A toa pointx' = (x',y’) €
1 is then simply

X—cx y—c
wor=(SEme)
w w
the inverse projection is given by

(. y) = (ex +wx’, ey + wy"). @)

Suppose now that two areas of interest Ay and A1 are given, defined
by ¢;, w;, with i = 0, 1, and that an animation from the first to the
second has to be defined (see figure 1). To this end we have to find
functions c(s) and w(s), s € [0, S], such that at least

¢(0) = ¢y,
c(S) =¢q,

w(0) = wy,
w(S) = wi.

The parameter s is along a path from the first to the second pro-
jection, and S denotes the final value. The functions ¢(s) and w(s)
denote the path of the camera and the width shown along the path.
An animation can now be defined by setting

s=Vt, te[0,5/V], 3

where V denotes the constant animation speed, and ¢ wall clock
time, for instance in seconds. In the remainder we will use s as
main parameter, decoupled from the basic animation speed V. For
convenience, if a unit speed is assumed, s and ¢ are interchangeable.
We simplify the problem by assuming that there is no perceptual
difference between horizontal, diagonal, and vertical panning. In
this case an optimal path ¢(s) is always a straight line, and hence

we can define
c(s) =c¢o+ e B U u(s), u € [ug,uq],

lleg —coll 4)
with ug = 0 and uy = |l¢; — ¢l

The parameter u(s) denotes panning along a straight line. We
have to find functions u(s) and w(s), s € [0, S], such that at least

u(0) = uo,
u(S) = uy,

w(0) = wo,
w(S) = wy. ®)
We can depict the problem in (u, w) space, as shown in figure 2.
We found these diagrams, which we called u, w-diagrams, more
convenient to reason about the problem than space scale diagrams.
Each projection maps to a point in the diagram. Zooming and pan-
ning naturally map to moving a point vertically or horizontally. The
axes have the same dimension, both units in world space. Further-
more, the diagram enables a direct physical interpretation. The hor-
izontal axis can be considered as a cross-section through the object



M to be displayed, the point can be interpreted as a camera, floating
at a height w above M with a field of view of 2arctan1/2 ~ 53 °.
The path (u(s), w(s)) is hence simply the path of a camera, flying
above a map. This can be emulated physically: Position yourself
in front of an image, look perpendicular to this image, and move
your head according to a camera path (or, move the image). In this
way we can try out various scenarios for zooming and panning in
an easy way, and obtain a rough feeling for optimal paths.

3.2 Requirements

The next question is what an optimal path is. We think this can be
summarized in two words: The optimal path should be smooth and
efficient. Smoothness is a constraint. The path should be at least
continuous in the first order, in the sense that no sudden steps are
made or abrupt changes in direction occur. These are requirements
on the shape of the path. Furthermore the parametrization of the
path must be chosen carefully. We formulate this as follows. When
the camera moves along the path, the viewer should get the im-
pression of a uniform and constant motion of the projected image
on the screen. We limit ourselves to the perceptual level here, and
discard cognitive aspects, such as memory, meaning of the image
shown etc. Such aspects are much harder to incorporate in a model,
and we assume that a perceptually smooth motion will also aid in
cognition.

Furthermore, in the remainder we assume that each projected
part of M has the same characteristics, i.e. each image shown is
equally interesting, has the same visual density, etc. for the range
of ¢ and w of interest, and that there are no discontinuities in the dis-
played image for varying w. In a strict sense, this requirement can
only be met by artificial imagery with fractal characteristics. In real
world applications, such as cartography, urban areas are more inter-
esting than uniformly colored oceans, in strong close-up views of-
ten less detail is available. On the other hand, most applications for
which interactive zooming is interesting will have details at many
scales, and it is the task of the designer to make sure that at each
scale an appropriate level of detail is shown. In cartography this is
well-known as generalization.

The aspect to be optimized is efficiency. We operationalize this
by aiming for the shortest path in u, w space possible: Detours are
not appreciated, we want to get from A to B as fast as possible.

3.3 Metric

We aim for a path that is smooth and efficient. Both require that we
are able to measure the effect of changing ¢ and w, as perceived by
the viewer. Following and generalizing the approach of Igarashi and
Hinckley [2000], we use the velocity of the moving image as a basis
for measurements, i.e., we aim at a metric for the perceived average
optic flow in the image window. To this end, we first consider the
velocity X’ of a projected point x in image space. We use a centered
dot as notation for differentiation with respect to s, e.g. a = da/ds.
Differentiation of (1) gives

X =

)
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We are not only interested in a single point, we have to measure the
velocity over the whole screen space /. For this we use the root
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VRMs is proportional to the animation velocity V, and the zoom
velocity w and pan velocity u, both relative to the width w in world
space. Also, VrRms shows that zooming has less impact (the fac-
tor 1/6) than panning. At this point it is too early to use VrRms
directly as a measure. We cannot be sure that the perceptual ef-
fect of zooming versus panning is indeed measured by the average
velocity. Hence, we define a metric on (u#, w) space that is more

general:
2

2_ P 0 1 2

ds =Edu +de. 6)
This metric gives the distance ds travelled, when u and w are
changed with du and dw. The parameter p represents a trade-off
between zooming and panning. A high value indicates that zoom-
ing has little impact, a low value indicates that panning has less
impact. For p = 61/4 ~ 1.565, the metric is equivalent to using
VRMs as a measure. The best value for p depends on the subjective
perception of the viewer, and has to be found experimentally. Re-
sults from such experiments and suggestions for good values of p
are given in section 6.

Figure 3 shows a visualization of the metric defined in (6) for
various values of p in (u, w) space. Each small ellipse denotes
a set of points equidistant to its center according to the metric in
(u, w) space. The shape of the ellipses is determined by p, their
size is proportional to w.

Given the metric, an optimal path can now be defined more pre-
cisely. Two conditions must be satisfied. First, the animation should
be smooth. In other words, when s varies constantly, the perceived
rate of change has to be constant according to the metric. This im-
plies that the path (u(s), w(s)) has to be arc length parametrized,
and should satisfy the following differential equation, derived di-
rectly from the metric:

pri? +1?/p* = w?. (7)

Secondly, the animation should be efficient. If the path is arc length
parametrized, then s represents the distance travelled. Efficiency
then implies that the total distance S should be minimal.

In terms of figure 3, the task of finding an optimal path loosely
comes down to finding a path between two points, such that at each
step along the path the same number of ellipses is crossed, and that
in total as few ellipses as possible are crossed. For each value of p
such an optimal path is shown, where the dots indicate equidistant
points. The shapes of these paths depend on p: little zooming for
low p, much zooming for high p.

4 Z0OOM OUT, PAN, ZOOM IN

We illustrate the preceding ideas first for a simple scenario, in the
next section we consider optimal paths. Figure 4 shows a simple
path:

e fors = 0tos4: zoom out from (ug, wo) to (ug, wm);



Figure 3: Metric in (1, w) space
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Figure 4: Zoom out, pan, zoom in

e fors = s4 to sg: pan from (uq, wy,) to (U1, wn);
e fors =sp to S: zoom in from (uq1, wy) to (u1, wi).

The problem now is to define a path (u(s), w(s)) such that the
path is arc length parametrized and that the total path length § is
minimal. For the first interval, where &= = 0, the first condition
(7) reduces to w = pw. A solution of this equation that satisfies
w(0) = wy is

w(s) = woexp(ps), s € [0,s4].

This is consistent with the recommendation given in [Mackinlay
et al. 1990], where the use of a logarithmically slower movement is
advocated when the target (in 3D) is approached. Similarly we find
for the last interval

w(s) = wy exp(p(sp —s)), s € [sp,S].

For the panning interval in between, where w = 0, the arc length
parametrization condition reduces to i = w,;/p. The solution of
this equation that satisfies u(s4) = ug is

u(s) = wm(s —sa)/p +ug, s €[sa,sgl
The quantities s4,sp, and S depend on wy,. The value of wy,
should be chosen such that S is minimal. We determine first the

total length by considering the length of the three intervals. First,
the length of the first interval follows from w(sg) = wyp, i.e.

spg = In(wy /wg)/p, wm = wy.
Similarly, we find for the length of the last interval
S —sp =In(wy/wy)/p, wm > wy.
The constraints wy; > wg and wy,, > w; are required here to make

sure that no negative pathlengths are generated. Using u(sp) = uy
we find for the length of the panning phase:

S — sS4 = p(uy —up)/wm.
Hence, the total length S, expressed in wy,, is

_ p(uy — up) + In(wsm /wp) n ln(wm/w1).
Wm P o

N

S is minimal if dS/dwy, = 0. This gives

=0.

—p(u1 —u 2
P 12 0)+
Wiy PWm



Together with the constraints that wy,, > wqg and wy,; > wq, we get
the optimal value for wy,

wy, = max(wg, wi, p2(u1 —uq)/2),

which completes the derivation of the optimal path for this sim-
ple scenario. In summary, we have found that the optimal path
(u(s), w(s)) fors € [0, S] for the zoom-pan-zoom scenario is given
by:

ug if0<s <sy
u(s) = | wm(s—sa)/o+ug ifsy <s<sp
uy ifsp <s<8§S
wq exp(ps) if0<s<sy
w(s) = W ifsqg <s <sp
wm exp(p(sp —s)) ifsp <s<S
sa = In(wm/wo)/p
sp = SsA+puy —ug)/wn
S = sp+In(wn/wi)/p
wp = max(wo, wi, p2(uy — 10)/2).

Ignoring the constraints, the optimal value of w;, depends only on
p and on the distance between ¢ and ¢;. For p = 61/4, Wy ~
1.2]le; — ¢gll, i.e. one has to zoom out to such a level that both
the start point ¢y and the end point ¢ are visible at some moment
during the flight.

5 THE OPTIMAL PATH

The preceding section dealt with a path with a rectangular shape.
The smoothness criterion is violated here: At the corners the motion
is discontinuous. Also, the total length is not optimal: By cutting
corners a shorter path can be achieved. An optimal path between
(ug, wo) and (u1, wy) has to satisfy the boundary conditions given
in (5), and the arc length parametrization condition (7). Further-
more, it has to be the shortest path between the two points, i.e. the
geodesic.

In standard Euclidean space a geodesic is a straight line, in
curved space this is usually a curve. A classic example is spher-
ical space, used for mapping spheres. On a longitude, latitude map
a line does not give the shortest path on the sphere, whereas a great
circle does. Also our (u, w) space is curved, because of the metric
we have defined. In Appendix 1 we illustrate how this curved space
can be depicted geometrically.

Curved space is studied with analytical means in differential
geometry, of which Gauss and Beltrami can be considered the
founders. From this vast area we only need how from the metric
an equation for the geodesics can be found [Struik 1950; Auslan-
der 1967; Lipschutz 1969]. Differential geometry tells us that for a
space with a metric of the form

ds?=Edu*+G dwz,

a geodesic (u(s), w(s)) has to satisfy the following equations

E E G
u+ﬁu2+?’”uw—ﬁw2=0, and
Ey 2 Gu .. wo.9
_ v —u v =0,
e B Te

where double dots denote double differentiation with respect to s
(e.g. Ui = d?u /dsz), and subscripts denote partial differentation

(e.g. Ey = 0E /0u). For our metric E = ,02/w2 and G = l/pzwz,
substitution gives

ii —2uw/w =0, and

®)

W+ p*i?/w — w2 /w = 0.

Hence, the optimal path is the solution for (u(s), w(s)) that satis-
fies equations (5), (7), and (8). In Appendix 2 we show how the
analytical solution can be derived, here we give the final result for
(u(s)’ w(S)), s € [Os S]s up 7& ui:

u(s) = w_(z) coshrq tanh(ps + rg) — w_(z) sinhrg + ug,
P P
w(s) = wqcoshrgy/cosh(ps +rg),
§ = (r—ro/pe, &)
ri = In(=b; +,/b>+1), i =0,1, and
w? — wi + (=D p*uy —ug)?
bi = ) , L= 07 13
2w; p=(uy — ug)

where the hyperbolic cosine, sine, and tangens are defined as
coshx = (¥ + e7¥)/2, sinhx = (¢ —e™)/2, and tanhx =
sinh x/ cosh x. For uy = u1 the optimal path is given by

u(s) = ug
w(s) = woexpkps)
S = [In(wi/wo)l/p
K = { -1 ifw; <wy
1 otherwise

Figure 5 shows sets of geodesic paths, starting from # = 0 and
w = 10 in different directions, for various values of p. Further-
more, in each plot a set of contours is shown as thin lines. Each
contour represents a set of points at an equal distance from the
start point. Both the paths and the contours are parts of ellipses,
where p again determines their shapes. A path lies on the ellipse
through (uq, wg) and (11, wy) with center (ug — wq sinh rO/,oz, 0),
the lengths of the axes in u and w direction are wq coshrg/ 02 and
wq coshrg respectively. For p = 1 paths are circles. The center
lies on the u-axis. For s — 00 the path approaches the horizontal
axis perpendicularly, i.e. for small w panning is not effective.

Given these images, the structure of equation (9) can now be
understood more easily. The elliptic path is defined by (1, w) =
(tanh(s)/ pz, 1/ cosh(s)), the other constants involved make sure
that the ellipse passes through (uq, wg) and (11, w1), and that the
parametrization fits the measure.

Figure 6 shows another visualization of the paths. The horizon-
tal axis denotes s, the vertical axis u. The thick lines show u(s)
for three values of p. This shows that the virtual camera moves
smoothly and monotonically in the direction of u. Furthermore
the instantaneous width is shown: the interval between the graphs
of u(s) — w(s)/2 and u(s) + w(s)/2, shown as thin lines. Again,
the effect of different values for p is clearly visible.

The scale of s has not been discussed so far. For this case, the
total path length S varies from about 4.2 to 4.5. What is this dimen-
sion? For a pure panning motion we find that value s corresponds
to a motion of pAu/w, i.e. s relates here to p times the number of
image widths panned, which is a fairly natural and understandable
measure. For example, for p = 1 panning from (u, w) = (0, 10)
to (40, 10) gives a distance s = 4. For a zoom out with a factor
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Figure 5: Paths and iso-distance curves in (i, w) space

Figure 6: v and w as a function of s

r = wq/wg we find that the corresponding s equals Inr/p. Hence,
zooming in from (40, 10) to (40, 1) gives a distance of s & 2.3.

The paths derived here and in the previous section can easily
be translated into an implementation of a smooth animation. The
simplest and also most flexible approach is to calculate for each new
frame everything anew. We take advantage here of the property that
geodesics are unique: if C is a point on the geodesic from A to B,
then the geodesic from C to B is a subset of the original one. We
typically use a procedure which takes as input the current view (¢
and wy), the target view (c¢q and wq), the animation parameters (V'
and p), and the time step At between frames, and which returns
the view (¢ and w) for the next frame. For the time step we use an
average value of the last five to ten frames.

Another implementation is to recalculate the path only when one
of the parameters changes. This requires two separate procedures
(one for making a step and one for changing the path), where care
has to be taken that the latter one is always called when a parame-
ter is changed. The suggested state-less implementation takes care
of this automatically, simplifying the change of parameters during
the flight, at the expense of some additional computing cost. But
typically, this cost is neglectable when compared to the rendering
of the frame.

6 USER EXPERIMENTS

We have done a first user experiment to obtain insight in preferred
values for V and p. We have implemented a small application
where the user can load an image, define areas of interest, switch
between these areas, upon which a smooth animation is shown with
user-defined settings for V and p. Also, the application has a test
mode for more controlled experiments. We used a high resolution
height map of Mars as image. This image was visually interesting,
contains information on various scales, and was unfamiliar to our
users. We explained the background of the experiments, and asked
the users to set V and p for two conditions. First, an alternating
zoom-pan animation between two locations was shown, secondly, a
tour around ten different locations was shown. We asked the users
to set the parameters such that the perceived animation was smooth,
fluent, and suitable for a daily use application. The task was done at
a notebook computer, and took about 5 minutes to complete. Users
could set the values via sliders, no feedback on numerical values
was given to prevent bias. The 26 users were colleagues and stu-
dents from our department, and all had (much) experience with us-
ing computers.

Many users commented on the importance of cognitive aspects.
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Figure 7: Scatterplot of V' and p values found

They pointed out that familiarity of the image shown, the amount
of detail in the image, and the exact task would influence their pref-
erences. Also, we found that some users set p to get a zoom-out
level which they liked, where the aspect of smooth motion was of
lesser importance. On the positive side, the users found the final
paths (given their preferences) smooth, pleasant, and natural.

Figure 7 shows the parameter settings that were selected by our
users. It shows that preference for p and V were uncorrelated,
hence these seem to be independent dimensions, and that the con-
ditions (two vs. ten locations) did not strongly influence the result.
The average value for V is 0.90, the standard deviation 0.43. For
p the average value is 1.42 and the standard deviation is 0.47. The
value of 1.42 is (statistically significant) smaller than 1.565, the
value which we derived from using the root mean squared average
velocity. The average value found suggests that p = +/2 is possibly
an optimal value, but we have not found yet a model to explain this.
Furthermore, the variation in the results was large, much larger than
we expected. Nevertheless, we think that these average values will
yield reasonable results for a variety of users and use cases. For an
optimal result, the setting has to be customizable to the preference
of the user.

7 CONCLUSIONS

We have shown how to generate a smooth animation from one view
on a 2D model to another. The problem turned out to be more com-
plex than it seems at first sight, we needed differential geometry
and had to solve a system of three differential equations to find an
optimal path. Was this worth it? We think it was. The end result
is a set of closed equations, which can easily be used to implement
smooth and efficient zooming and panning. The visual result, as
we observed from user tests is pleasing and smooth. The original
impetus for this work was the visualization of call graphs via a hier-
archical matrix visualization [van Ham 2003]. The use of a smooth
zoom-pan strategy to maintain a good overview was vital here, be-
cause the information shown is abstract and varies per level. The
method described here has been integrated, and gives very good re-
sults, visually. Finally, there are many other applications that can
take advantage of this method, i.e. any application where a user
observes some 2D object and is enabled to zoom and pan.

Besides from practical use, the approach described here is also
interesting from a more theoretical point of view. We used mea-
surement of average perceived velocity as our starting point, and
have presented a model to relate zooming and panning. In the fu-
ture we will explore if the approach described here also can deal
with more general image transforms, especially anisotropic scaling
and rotation. Another possible variation is to use a varying velocity,

such as acceleration at the beginning and deceleration at the end of
the animation. Furthermore, we focussed here on animations where
the start and end are given. The metric introduced here can possibly
also be used to optimize free navigation, where the user is free to
control the path himself.

We aimed at perceptually pleasing results, however, cognitive as-
pects also play an important role for this kind of animations. More
research can be done to study the role of perception versus cogni-
tion. Specifically, it is interesting to study what the average value
and variation of p is when perceptual effects are isolated in some
way. A more precise analysis of the various cognitive aspects as
well as guidelines for good values for p given a variety of tasks,
image contents, etc. would be useful. An extended model, in which
the user can additionally specify that he for instance wants to zoom
out more than the optimal paths defined here could also be useful
to tackle the cognitive aspects. Meanwhile however, the model pre-
sented here is already useful for a variety of cases, especially if the
user can tune the two parameters to his preferences.
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APPENDIX 1 - CURVED SPACE

To illustrate this concept of curved space, we consider what geo-
metric surface corresponds to our metric, like a sphere corresponds
with the longitude latitude map. Loosely, we distort the 2D images
shown in figure 3 to a 3D surface, such that all ellipses are distorted
to circles with the same size. To this end, one has to shrink hori-
zontal lines (w constant) for high values of w, and to stretch them
for low values. This will give a rotationally symmetric 3D surface.
Horizontal lines are distorted into circles, or, in other words, the u
parameter is mapped to rotation.



Figure 8: u, w space depicted as a geometric surface

More formally, let us consider a parametric surface x(u, w)
(x(u, w), y(u, w), z(u,v)). The length of a small step dx
X, du + Xydv has to fit the measure, i.e.

> 1
w pw

Figure 8 shows a surface that satisfies this constraint:

x(u,w) = (p/w)cosu,
y@,w) = (p/w)sinu, and
1 2 _ 4
z(u, w) = —ln(w+\/w2—p4)_w7’0'
) wp

The horizontal circles are lines with constant w, the lines towards
the top are lines with constant u. In other words, panning is mapped
to rotating around the central axis. Panning over large distances
corresponds to rotating multiple times around the central axis, each
point on the surface is multi-valued. Zooming out corresponds to
climbing the object, zooming in to descending. Note that the square
grid cells shrink when w increases. Two geodesics are shown. For
large panning distances (moving multiple times around the central
axis) the geodesic is located high on the surface, i.e. zooming out
is stronger.

APPENDIX 2 — DERIVATION PATH

In this appendix we give the derivation of the optimal path
(u(s), w(s)), s € [0, S]. This path has to satisfy the boundary con-
ditions

S 2 S = )
it has to be arc length parametrized:
p2i? +w?/p% = w?, (11)
and has to satisfy the geodesic equations
ii —2uw/w =0, and
(12)

W+ p*i?/w — w2 /w = 0.

Equation (11) can be satisfied by introducing an extra parameter
B(s) and setting

u = wsin(2B8)/p, and (13)
wp cos(2P). (14)
If we substitute this in (12), both equations reduce to

p ds = dp/sin S cos B.

Integration gives, with r( an integration constant,

W

ps +rg =Intan g,

If we set s™ = ps +r( to shorten notation, then we get tan 8 = e’ .

The use of cos2 = (1 — tan? B/ + tan? B) in equation (14)
leads to

b= pwd—e®)/1+e¥)

= —pwsinhs™/coshs™.
Rearrangement and integration give

Inw InA — Incoshs™,

hence
w(s) = A/ cosh(ps + rg), (15)

where A is an integration constant.
Using sin28 = tan 8/(1+ tan? B) in (13) a similar derivation leads
to

u(s) = Atanh(ps +ro)/p> + B, (16)

where B is yet another integration constant.

We have now found u(s) and w(s), the next step is to set the four
unknown constants A, B, rg, and S such that the boundary condi-
tions (10) are satisfied. From w(0) = wg we get

A = wq coshry.
Letry =rg + pS. From w(S) = wq we get
A = wjy coshry.
Combination of the last two equations gives
w1 coshry — wq coshrg = 0. 17)

Similarly, the use of u(0) = ug and u(S) = u; gives

B = ug— (wo/p?)sinhrg, and
B = uj— (w/p>) sinhry,
and combined
w1 sinhrq — wqsinhrg = (uq — uo)pz‘ (18)

LetU = (u; — uo)pz. The unknown r{ can be eliminated from
(17) and (18) by using cosh?ry — sinh? r = 1, resulting in

w% = w(z) — 2wqU sinhrg — U?,

SO
sinhrg = (wg — w} — U?)/2wpU = —by,

hence
ro = In(—=bg + b(z) +1).
Similarly, elimination of ry from (17) and (18) gives
r1 = In(=by +/b? +1)

which completes the derivation of u(s) and w(s).



