initial commit
commit
089e5c535e
@ -0,0 +1,19 @@
|
||||
# SHAmwow
|
||||
|
||||
Sometimes you just want to understand how an algorithm works, so you implement it yourself.
|
||||
|
||||
The sha2 function in shamwow.rb implements the SHA-256 hashing function in Ruby. shamwow_test.rb contains a few sanity tests for the right-rotate function and for SHA2 itself, testing against the output of the `Digest::SHA2.hexdigest` method in the Ruby standard library.
|
||||
|
||||
It should go without saying that this was just for fun, and you should never, ever roll-your-own cryptography primatives for any reasonable purpose!
|
||||
|
||||
This was fun.
|
||||
|
||||
## Sources
|
||||
|
||||
* the actual spec: <http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf>
|
||||
* wikipedia's pseudocode breakdown: <https://en.wikipedia.org/wiki/SHA-2#Pseudocode>
|
||||
* a JS implementation that helped as I was debugging some boneheaded mistakes: <http://www.movable-type.co.uk/scripts/sha256.html>
|
||||
|
||||
## Obligatory
|
||||
|
||||
<iframe width="560" height="315" src="https://www.youtube.com/embed/F3lrhPeK6gU" frameborder="0" allowfullscreen></iframe>
|
@ -0,0 +1,100 @@
|
||||
#!/usr/local/bin/ruby
|
||||
|
||||
def chunker(string, chunk_size)
|
||||
return (string.length / chunk_size).times.collect { |i| string[i * chunk_size, chunk_size] }
|
||||
end
|
||||
|
||||
# treat all numbers as if they are 32-bit integers
|
||||
def ror(num, shift)
|
||||
((num >> shift) | (num << (32-shift)) & ((2 ** 32) - 1))
|
||||
end
|
||||
|
||||
def sha2(message)
|
||||
|
||||
# Implementation taken from https://en.wikipedia.org/wiki/SHA-2#Pseudocode
|
||||
message_in_bits = message.unpack("B*")[0]
|
||||
|
||||
# first 32 bits of the fractional parts of the square roots of the first 8 primes 2 through 19:
|
||||
h0 = 0x6a09e667
|
||||
h1 = 0xbb67ae85
|
||||
h2 = 0x3c6ef372
|
||||
h3 = 0xa54ff53a
|
||||
h4 = 0x510e527f
|
||||
h5 = 0x9b05688c
|
||||
h6 = 0x1f83d9ab
|
||||
h7 = 0x5be0cd19
|
||||
|
||||
# first 32 bits of the fractional parts of the cube roots of the first 64 primes 2 through 311:
|
||||
k = [
|
||||
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
|
||||
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
|
||||
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
|
||||
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
|
||||
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
|
||||
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
|
||||
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
|
||||
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
|
||||
]
|
||||
|
||||
len = message_in_bits.length
|
||||
bits = message_in_bits
|
||||
bits << "1"
|
||||
bits << "0" * (512 - ((bits.length + 64) % 512))
|
||||
bits << "%064b" % len
|
||||
|
||||
chunked = chunker(bits, 512)
|
||||
|
||||
i = 0
|
||||
while i < chunked.length
|
||||
m = []
|
||||
|
||||
message = chunker(chunked[i], 32)
|
||||
message.each_with_index { |word, index| m[index] = word.to_i(2) } # here's where we pass from strings of 1s and 0s back to numbers
|
||||
|
||||
(16..63).each { |word|
|
||||
s0 = ror(m[word-15], 7) ^ ror(m[word-15], 18) ^ (m[word-15] >> 3)
|
||||
s1 = ror(m[word-2], 17) ^ ror(m[word-2], 19) ^ (m[word-2] >> 10)
|
||||
m[word] = (m[word-16] + s0 + m[word-7] + s1) & 0xFFFFFFFF
|
||||
}
|
||||
|
||||
a = h0
|
||||
b = h1
|
||||
c = h2
|
||||
d = h3
|
||||
e = h4
|
||||
f = h5
|
||||
g = h6
|
||||
h = h7
|
||||
|
||||
(0..63).each { |word|
|
||||
s1 = ror(e, 6) ^ ror(e, 11) ^ ror(e, 25)
|
||||
ch = (e & f) ^ (~(e) & g)
|
||||
temp1 = (h + s1 + ch + k[word] + m[word]) & 0xFFFFFFFF
|
||||
s0 = ror(a, 2) ^ ror(a, 13) ^ ror(a, 22)
|
||||
maj = (a & b) ^ (a & c) ^ (b & c)
|
||||
temp2 = (s0 + maj) & 0xFFFFFFFF
|
||||
|
||||
h = g
|
||||
g = f
|
||||
f = e
|
||||
e = (d + temp1) & 0xFFFFFFFF
|
||||
d = c
|
||||
c = b
|
||||
b = a
|
||||
a = (temp1 + temp2) & 0xFFFFFFFF
|
||||
}
|
||||
|
||||
h0 = (h0 + a) & 0xFFFFFFFF
|
||||
h1 = (h1 + b) & 0xFFFFFFFF
|
||||
h2 = (h2 + c) & 0xFFFFFFFF
|
||||
h3 = (h3 + d) & 0xFFFFFFFF
|
||||
h4 = (h4 + e) & 0xFFFFFFFF
|
||||
h5 = (h5 + f) & 0xFFFFFFFF
|
||||
h6 = (h6 + g) & 0xFFFFFFFF
|
||||
h7 = (h7 + h) & 0xFFFFFFFF
|
||||
|
||||
i = i + 1
|
||||
end
|
||||
|
||||
("%08x" % h0).concat("%08x" % h1).concat("%08x" % h2).concat("%08x" % h3).concat("%08x" % h4).concat("%08x" % h5).concat("%08x" % h6).concat("%08x" % h7)
|
||||
end
|
Loading…
Reference in New Issue