start working out how the color versions of these work...

This commit is contained in:
David 2021-01-12 20:19:48 -05:00
parent 25240c2f0a
commit 4c0678cf77
5 changed files with 107 additions and 22 deletions

View File

@ -5,3 +5,5 @@ This repo implements a number of the dithering methods detailed on <https://surm
light.png, light-hires.jpg, dark.png, and dark-hires.jpg are from Surma's post, used under CC BY-NC-SA 4.0.
david.png is taken from the wikipedia article on dithering, where it was released into the public domain.
I took cricket.jpg.

74
color_quant.go Normal file
View File

@ -0,0 +1,74 @@
package main
import (
"image/color"
"math/rand"
)
var bwpallette = color.Palette{
color.Black,
color.White,
}
var sixteencolors = color.Palette{
color.RGBA{0, 0, 0, 255}, // black
color.RGBA{0, 0, 127, 255}, // navy
color.RGBA{0, 0, 255, 255}, // blue
color.RGBA{0, 127, 0, 255}, // green
color.RGBA{0, 255, 0, 255}, // lime
color.RGBA{127, 0, 0, 255}, // maroon
color.RGBA{255, 0, 0, 255}, // red
color.RGBA{0, 127, 127, 255}, // teal
color.RGBA{127, 0, 127, 255}, // purple
color.RGBA{127, 127, 0, 255}, // olive
color.RGBA{0, 255, 255, 255}, // aqua
color.RGBA{255, 0, 255, 255}, // fuchsia
color.RGBA{255, 255, 0, 255}, // yellow
color.RGBA{127, 127, 127, 255}, // gray
color.RGBA{192, 192, 192, 255}, // silver
color.RGBA{255, 255, 255, 255}, // white
}
func permuteColor(c color.Color, i uint8) color.Color {
r, g, b, a := c.RGBA()
return color.RGBA{
uint8(r>>8) + i,
uint8(g>>8) + i,
uint8(b>>8) + i,
uint8(a >> 8),
}
}
// naivePalette smashes each pixel to its closest color in the pallette.
func naivePalette(p color.Palette) quantizerFunction {
return func(_, _ int, c color.Color) color.Color {
return p[p.Index(c)]
}
}
// randomNoisePalette injects random noise into the quantization step
func randomNoisePalette(p color.Palette) quantizerFunction {
return func(_, _ int, c color.Color) color.Color {
// the randomization here is tuned for the sixteen-color palette for now.
// I think the proper theory here is probably "only try and randomize within one palette swatch in either direction".
// it might be possible to instead permute the color selected _from the palette_ (i.e. modify the result of p.Index(c))...
// ...but I think for that to work you'd need a proper "ordering" for the colors.
noise := rand.Intn(64) - 32
if noise < 0 {
noise = 0
}
rc := permuteColor(c, uint8(noise))
return p[p.Index(rc)]
}
}
// color permutation algo: https://en.wikipedia.org/wiki/Ordered_dithering#Algorithm
func colorBayer(level int, p color.Palette) quantizerFunction {
b := newBayer(level)
r := len(p)
return func(x, y int, c color.Color) color.Color {
v := float64(r) * (b.valueAt(x, y) - 0.5)
rc := permuteColor(c, uint8(v))
return p[p.Index(rc)]
}
}

BIN
example/cricket.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 71 KiB

31
main.go
View File

@ -3,6 +3,7 @@ package main
import (
"fmt"
"image"
"image/color"
_ "image/jpeg"
"image/png"
"math/rand"
@ -10,6 +11,27 @@ import (
"time"
)
type coord struct {
x, y int
}
// provided x, y, and color at location, return a color
type quantizerFunction func(int, int, color.Color) color.Color
// apply sequentially applies a quantizing function to an image and returns the result
func apply(i image.Image, f quantizerFunction) image.Image {
out := image.NewRGBA(image.Rect(0, 0, i.Bounds().Max.X, i.Bounds().Max.Y))
b := out.Bounds()
for y := b.Min.Y; y < b.Max.Y; y++ {
for x := b.Min.X; x < b.Max.X; x++ {
out.Set(x, y, f(x, y, i.At(x, y)))
}
}
return out
}
func main() {
if len(os.Args) == 1 || len(os.Args) > 4 || os.Args[1] == "help" {
fmt.Printf(`usage: %s <path/to/image.ext> <dither_option> <path/to/output.png>
@ -38,17 +60,26 @@ func main() {
new = apply(i, noOp)
case "naive":
new = apply(i, naiveBW)
case "palette":
new = apply(i, naivePalette(sixteencolors))
case "randomnoise":
rand.Seed(time.Now().UnixNano())
new = apply(i, randomNoise)
case "noisepalette":
rand.Seed(time.Now().UnixNano())
new = apply(i, randomNoisePalette(sixteencolors))
case "bayer0":
new = apply(i, bayerDithering(0, false))
case "bayer0p":
new = apply(i, colorBayer(0, sixteencolors))
case "bayer0n":
new = apply(i, bayerDithering(0, true))
case "bayer1":
new = apply(i, bayerDithering(1, false))
case "bayer1n":
new = apply(i, bayerDithering(1, true))
case "bayer1p":
new = apply(i, colorBayer(1, sixteencolors))
case "simpleerror":
new = apply(i, simpleErrorDiffusion())
case "floydsteinberg":

View File

@ -1,28 +1,10 @@
package main
import (
"image"
"image/color"
"math/rand"
)
// provided x, y, and color at location, return a color
type quantizerFunction func(int, int, color.Color) color.Color
// apply sequentially applies a quantizing function to an image and returns the result
func apply(i image.Image, f quantizerFunction) image.Image {
out := image.NewRGBA(image.Rect(0, 0, i.Bounds().Max.X, i.Bounds().Max.Y))
b := out.Bounds()
for y := b.Min.Y; y < b.Max.Y; y++ {
for x := b.Min.X; x < b.Max.X; x++ {
out.Set(x, y, f(x, y, i.At(x, y)))
}
}
return out
}
// noOp just clones colors from one image to another, to validate file handling.
func noOp(_, _ int, c color.Color) color.Color {
return c
@ -57,10 +39,6 @@ type bayer struct {
matrix map[coord]float64
}
type coord struct {
x, y int
}
func (b *bayer) valueAt(x, y int) float64 {
return b.matrix[coord{x: x % b.side, y: y % b.side}]
}